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Abstract 

An algorithm is described which combines the magic- 
integer concept with that of representing a large num- 
ber of phases by random numbers. The process, called 
MAGEX89, is more economical than previous magic- 
integer approaches and in a number of tests its perfor- 
mance compares favourably with those of other com- 
monly used methods of solving small structures. 

Introduction 

The magic-integer concept, introduced by White & 
Woolfson (1975), was utilized in a number of direct- 
method approaches to structure solution culminating 
in MAGEX (Hull, Viterbo, Woolfson & Zhang, 1981; 
Zhang & Woolfson, 1982) which was an option in 
earlier versions of MULTAN. In the original 
MAGEX procedure a number, q, of reflexions had 
their phases represented (in cycles) by 

~j= mix (modulo 1), j =  1 , 2 , . . . ,  q, (1) 

where the mj are integers based on the Fibonacci 
series. The relationships which linked the combina- 
tion of these reflexions with those defining the origin 
and enantiomorph ( O +  E) became the foundation 
for a one-dimensional Fourier series, the $ map, with 
space variable x. Peaks in the $ map, translated into 
phases by (1), gave plausible starting points for phase 
extension. There was also a facility for carrying out 
multiple-pathway phase extension from each starting 
set of phases by further use of the ~b-map concept. 

Although the general use of MAGEX has declined, 
in favour of the RANTAN approach (Yao, 1981) or 
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SA YTAN (Debaerdemaeker, Tate & Woolfson, 1985, 
1988) we have continued to develop the idea and 
would claim that, at least for small structures (-< 100 
independent atoms, say), what we have produced, 
MAGEX89, compares favourably in effectiveness 
and efficiency with other available methods. 

M A  GEX 89 

In the procedure MAGEX89 we have combined the 
magic-integer concept with that of representing a 
large number of phases by random numbers. The 
algorithm we use to select the starting-set reflexions 
is that given by Zhang, Luo, Chen& Yao (1989). The 
O + E reflexions are chosen to have values of E and 
aest as large as possible where 

~(h)est  = E  K(h, k) l~{K(h, k)} (:2) 
k I0{K(h, k)}' 

where K (h, k) is the usual direct-methods K value and 
ll(X) and lo(x) are modified Bessel functions. A 
further 5-25 reflexions for the starting set are chosen 
so as to satisfy the following criteria as well as 
possible: 

(i) these reflexions must be strongly linked with 
O+E so that the origin and enantiomorph are 
strongly defined by the phases of the complete starting 
set; 

(ii) they should have values of E and aest as large 
as possible. 

These extra starting-set reflexions, q in number, 
have their phases allocated by (1) with multiple start- 
ing sets generated using random values in the range 
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Table 1. Results o f  tests with three methods: S = 
S W T R  ( M U L T A N 8 2  version on P D P l l / 4 4 ) ;  R =  
R A N T A N  ( M U L T A N 8 2  version on P D P l l / 4 4 ) ;  

M = M A G E X 8 9  

A / B  indicates  that  A out o f  B a toms  were found  in the best  E 
map .  A zero indicates  that  the defaul t  run found  no solution.  

Space g roup  A~ B 
Structure and  contents  S R M 

CI2H16N205 S P2 t Z = 4 0 27/40 23/40 
C27H43NO4 P2t212 t Z = 4 0 0 22/32 
C16Ht2CIN P21212 t Z =4 17/18 17/18 17/18 
CI6HltN302 R3 Z = 6  21/21 0 21/21 
C12HI4N204S P1 Z = 2 19/19 0 0 
CI4H15BNO4 P21/c Z = 4 20/20 0 20/20 
C281--13oBN4 P2Jc Z = 4 15/33 0 15/33 
ClaH2sBaFeN Pama Z =4 6/13 6/13 6/13 
CIsHtgO6-H20 Cmc2t Z = 4  9/15 9/15 11/15 

0 to 1 for the variable x. The default value of q is 15 
but can be fixed by the user in the range 5 to 25 and 
the default number of trials, i.e. different values of x, 
equals the number of independent non-H atoms in 
the structure. A further N reflexions with large E and 
aest values, where N = 300, are chosen by the pro- 
gram. These are allocated random values, a different 
set for each trial. 

With all phases having initial values a process 
of phase refinement is started using the standard 
M U L T A N  weighted tangent formula. Weights are 
associated with the initial phases as follows: O + E: 
weight= 1.0 and the phases are kept fixed; q extra 
starting-set phases: weight=0.95; other phases: 
weight = 0-20. At the end of the refinement figures of 
merit are found and the process continues as for 
M U L  TAN. 

We have investigated the average error obtained 
when a number of phases are generated by using a 
random variable x. For example, with q = 10 and 
using 30 trial values of x one trial would give a lowest 
average deviation from true phases of about 50 ° . To 
illustrate this, for a set of true phases 46, 78, 160, 315, 
130, 35, 245, 348, 4, 88 ° and with a magic-integer 
sequence 177, 176, 175, 173, 170, 165, 157, 144, 123, 
89 with 30 random values of x, one of them gave a 
mean average error of 52.3 ° . This process is far less 
demanding of computer time than calculating a ~b 
map. In addition, we have found no advantage in 
taking equally spaced values of x in the range 0 to 1 
which is sometimes better and sometimes worse than 
taking random values. The advantage of using ran- 
dom values is that, if one has been unsuccessful with 
a first run and wishes to try again, the following batch 
of trial values of x can be completely different from 
the previous ones. 

Tests of  MAGEX89 

We have developed M A G E X 8 9  to run on the com- 
puter available to us, a PDP 11/44. We also have 

Table 2. The best figures of  merit found by default runs 
for the structure C27H43NO4 

The M A G E X 8 9  phase  set led to the s t ructure  solution.  The  figures 
o f  meri t  are the convent ional  ones  used by M U L T A N .  

Method  A B S F O M  P S I Z E R O  R E S I D  

SWTR 0.707 2.340 27.74 
RANTAN 0"755 2"294 28-03 
MAGEX89 0.835 1-723 22.51 

available M U L T A N 8 2 ,  which runs on the same 
machine and contains R A N T A N  and SWTR, which 
uses the statistically weighted tangent formula 
developed by Hull & Irwin (1978). In Table 1 we 
show the results of applying M A G E X 8 9 ,  R A N T A N  
and SWTR,  all run with default parameters, to nine 
structures and the relative computing times used with 
these three methods are 91,100 and 58, respectively. 
These structures were previously unknown and all 
eventually refined to R factors of less than 0.08 by 
conventional least-squares methods. 

The structure with formula C 2 7 H 4 3 N O 4  w a s  solved 
only by M A G E X 8 9  and we give details of the solution 
here. As shown in the table the space group is P2~2~21 
with Z = 4. Data were collected on an Enraf-Nonius 
CAD-4 diffractometer with Mo Ka radiation, 
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Fig. 1. The finally deduced  chemical  s t ructure of  C27H43NO4 and 
the E m a p  found  f rom M A G E X 8 9  which gave the solut ion.  
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graphite monochromator  and w/20 scan mode in the 
range 1--0-< 25 °. Table 2 gives the figures of merit 
of the best sets for all three methods; that of 
MAGEX89 gave an E map showing 22 atoms and 
is reproduced in Fig. 1. Fourier calculations revealed 
the remaining atoms and least-squares refinement 
gave a final residual of 0.055 for the observed 
reflexions. 

Discussion 

It will be seen from Table 1 that for the trial structures 
the MAGEX89 method performed somewhat better 
than the other two and the computer resources used 
by MAGEX89 were 9% less than those of RANTAN. 
Not too much should be made of that since by modify- 
ing parameters all three methods are probably capable 
of solving all the structures. What we do say is that 
it is worthwhile having MAGEX89 available. While 
any individual method may not succeed for a par- 
ticular structure, the probability of failure is far lower 
with many methods available. 

The version of MAGEX89 we have used has been 
programmed for a P D P l l / 4 4  but should be able to 

run on most standard personal computers. It can 
handle all 230 space groups in the standard orienta- 
tions, including alternative settings, as given in Inter- 
national Tables for Crystallography (1987). 

We are most grateful to the National Natural 
Science Foundation of China for its support of this 
project and to Professor M. M. Woolfson for advice 
and help with the preparation of this manuscript. 
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Abstract 

The study of families of protein structures is impor- 
tant in analysing the results of NMR structure deter- 
minations and in investigating mechanisms of 
molecular evolution at the level of conformation. A 
method is discussed for finding the transformations 
that mutually superpose an arbitrary number of struc- 
tures in the least-squares sense given specified atom- 
to-atom correspondence. 
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I. Introduction 

Superposition has become an important tool for com- 
paring protein structures and for deriving an 'average' 
structure from a family of conformations of a protein. 
The problem arises regularly in the determination of 
the three-dimensional structure of a protein in sol- 
ution using nuclear magnetic resonance, which typi- 
cally produces an ensemble of conformations 
(Wuethrich, 1986). Sets of interproton distances 
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